Ranking Competitors Using Degree-Neutralized Random Walks

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ranking Competitors Using Degree-Neutralized Random Walks

Competition is ubiquitous in many complex biological, social, and technological systems, playing an integral role in the evolutionary dynamics of the systems. It is often useful to determine the dominance hierarchy or the rankings of the components of the system that compete for survival and success based on the outcomes of the competitions between them. Here we propose a ranking method based o...

متن کامل

Improving Diversity in Ranking using Absorbing Random Walks

We introduce a novel ranking algorithm called GRASSHOPPER, which ranks items with an emphasis on diversity. That is, the top items should be different from each other in order to have a broad coverage of the whole item set. Many natural language processing tasks can benefit from such diversity ranking. Our algorithm is based on random walks in an absorbing Markov chain. We turn ranked items int...

متن کامل

Degree Ranking Using Local Information

Most real world dynamic networks are evolved very fast with time. It is not feasible to collect the entire network at any given time to study its characteristics. This creates the need to propose local algorithms to study various properties of the network. In the present work, we estimate degree rank of a node without having the entire network. The proposed methods are based on the power law de...

متن کامل

On Clustering Using Random Walks

We propose a novel approach to clustering, based on deterministic analysis of random walks on the weighted graph associated with the clustering problem. The method is centered around what we shall call separating operators, which are applied repeatedly to sharpen the distinction between the weights of inter-cluster edges (the so-called separators), and those of intra-cluster edges. These operat...

متن کامل

Recommendations using Absorbing Random Walks

Collaborative filtering attempts to find items of interest for a user by utilizing the preferences of other users. In this paper we describe an approach to filtering that explicitly uses social relationships, such as friendship, to find items of interest to a user. Modeling user-item relations as a bipartite graph we augment it with user-user (social) links and propose an absorbing random walk ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PLoS ONE

سال: 2014

ISSN: 1932-6203

DOI: 10.1371/journal.pone.0113685